CUE:

David Taylor Research Center
Bethesda, MD 200845000
[ :
&N 4
]
‘ o i
CV ﬂ
DTRC SHD 1268-01 June 1988 ':‘-"
N~
N Ship Hydromechanics Department
\
E NEAR AND FAR FIELD PROPELLER WAKE STUDY
USING LASER DOPPLER VELOCIMETRY
by
E James N, Blanion
* E Scott Fish
w
3 >
1] = E—‘q
&
=i
O
=it
oo
oW
& >
a
o
A
= |
= pe
= oo
O
a
e,
<
[
w)
a <
Z
< o Approved For Public Release;
o Z Distribution Unlimited.
<<
o
- DTIC
5 CLECTE
o0}
5 JUL 2 21968¢
2 &
wn
o H
a4
&
a
‘!‘g‘l |“
KRN

[

T %Eﬁ

{ 0

) o

. N

L A AT D o T s PO MO AN e T e T T T T Lt O T T O T [ L R U LR IR LA AN LA AN U A O M .&




MAJOR DTNSRDC TECHNICAL COMPONENTS '

COMMANDER 00

L
TECHNICAL DIRECTOR 01

OFFICER IN CHARGE
CARDEROCK

05

SHIP SYSTEMS INTEGRATION
DEPARTMENT

12

SHIP PERFORMANCE
DEPARTMENT

15

AVIATION AND SURFACE
EFFECTS DEPARTMENT

16

STRUCTURES DEPARTMENT

17

COMPUTATION, MATHEMATICS
& LOGISTICS DEPARTMENT

18

SHIP ACOUSTICS DEPARTMENT

19

CENTRAL INSTRUMENTATION
DEPARTMENT

29

OFFICER IN CHARGE
04 ANNAPOLIS

PROPULSION AND AUXILIARY
27 SYSTEMS DEPARTMENT

SHIP MATERIALS ENGINEERING
28 DEPARTMENT

the document.

DESTRUCTION NOTICE — For classified documents, follow the procedures in DOD
5220.22M, Industrial Security Manual, Section 1I-9, or DOD 5200.1-R, Information
Security Program Regu'ation, Chapter IX. For unclassified, limited documents,
destroy by any method that will prevent disclosure of contents or reconstruction of

NOW-DTNSRDC 5602/30 (Rev. 4-86)

\ - - p
M L N SN S S O O O T O O S Ot s

- -~ -
WAL NN W4Y,

m - MRS I R y“-‘.\v-‘

G ot



. A N
S s

AP PUICEUR TOE RGN U UM AN O KRNI KA AR PO AN O M ™ PN MIUMI VWU U UN LWL LY e L LN U U TR\

UNCLASSIFIED
§EZU“-’|V ELA;;W!?AT@N 5F THIS PAUZ

REPORT DOCUMENTATION PAGE

Ya. REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

1b. RESTRICTIVE MARKINGS

2a. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHED
ULE STATEMENT A

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
DTRC SHD-1268-01

5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If applicable)

David Taylor Research Center

6c ADDRESS (City, State, and 2IP Code)
Bethesda, Maryland 20084-5000

7b. ADDRESS (City, State, and ZIP Code)

8a MAME OF FUNDING /SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)-
Office of Naval Research
8¢ ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO NO. ACCESSION NO
61153N B102301N1 DN#507106
1) TITLE (Include Securnity Classification)
NEAR AND FAR FIELD PROPELLER WAKE STUDY USING ILASER DOPPLER VELOCIMETRY
12 PrRSONAL AUTHOR(S) T T e
James N. Blanton and Scott Fish e T
13a TYPE OF REPORT 13b TIME COVERED 14 DAT F REPORT (Year, Month, Day) S PAGE CQUNT
TECHNICAL FROM 10 / JISR?E 128¢ ( y 45 .
16 SUPPLEMENTARY NOTATION N
N \\\
N
17 1 COSATI CODES 18. SUBJVF‘?MS {Continue on reverse if necessary and identify by block number) N
FiELd GROUP SUB-GROUP \
l PROPELLER WAKE )LASER DOPPLER VElOCIMFTER FAR WAKE
\ 14 'm' \' v
9 ABSTW (Continue on reverse if necessary and identify by block number) "-

Two towing tank experiments using a slender boat and a body of revolution
model to produce a propeller wake near the free surface were conducted. The
first experiment demonstrated the feasibility of the LDV measurement system by
utilizing several modes of velocity Jdata colliection and coircclation in the
propeller wake. Mean and blade rate periodic turbulent flow quantities were
collected showing good comparison with other published data in the region
slightly downstream ( < 1 diameter) of the propeller. It was also found that
by 5 diameters downstream, the periodicity of the velocity distribution was no
longer visible. 1In the second experiment, streamwise mean velocity
measurements were obtained far downstream (18 diameters) of the propeller.
Preliminary propeller wake characteristics were measured for the purpose of
gaining an understanding of the growth rate and nature of the flow._ These '

(Continued) e

S

i g

20 DISTRIBUTION 7 AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
O uncLASSIFIED/UNLIMITED  BXSamE as roT {CJ oTIC USERS UNCLASSIFIED

223 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
James N. Blanton (301) 227-12326 Code 1543

,l.q'l

DD FORM 1473, 8a maR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete

UNCIASSIFIED

o o

DA O o W A W T .
1018, ) " .l.“lu-.n.'. WU W ™ M BT I N Mon

T L, LY N N S B A S R S <.

- ﬁ

AN A L] = W L

o oy

alale

-

o ol 0>

W o
0 L A X X

——
.1

',

A~ At WY,



T K T O O T YO TR

TR IS ROy

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

M WU R R

> 0at ept v, qataga Ua

(Block 19 Continued)

pTIC

coPY
INSPECTED

6

NTIS GRA&I

Accegsion For #__‘
DTIC TAB 0O
Unannounced O

Justification 4

By

Distribution/ = __
Availability Codeg»_
*“WKQail end/or
Diet | Snecial

\| |

¥

characteristics could be used to plan a more detailed study of the far—
field propeller wake and its interaction with the free surface.
Significant propeller wake interaction with the free surface was not

obgserved 18 diameters downstream due to the relatively large propeller
submergence depth (1.5 diameters to propeller axis). Axial swirl decay
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which can be utilized for measurements taken closer to the free surface.
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' CtH Propeller thrust loading coefficient
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% n Propeller rps v
0 A
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r Radial distance from model axis
K . 3
N R Propeller radius
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i: Uy, Ufg Freestream velocity )
1 t
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u,v,w Axial, transverse and vertical velocity components
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K Vean Tangential velocity b
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) ABSTRACT °'
Two towing tank experiments using a slender boat and a body of ]
revolution model to produce a propeller wake near the free surface
- were conducted. The first experiment demonstrated the feasibility ¢
of the LDV measurement system by utilizing several modes of velocity ;:
data collection and correlation in the propeller wake. Mean and 4.
blade rate periodic turbulent flow quantities were collected showing "
good comparison with other published data in the region slightly :

downstream ( < 1 diameter) of the propeller. It was also found that
1 by 5 diameters downstream, the periodicity of the velocity ‘
4 distribution was no longer visible. In the second experiment, \Q
streamwise mean velocity measurements were obtained far downstream '
(18 diameters) of the propeller. Preliminary propeller wake

characteristics were measured for the purpose of gaining an Y,
understanding of the growth rate and nature of the flow. These #
characteristics could be used to plan a more detailed study of the X
| far—field propeller wake and its interaction with the free surface. F:
i Significant propeller wake interaction with the free surface was not 4
] observed 18 diameters downstream due to the relatively large -
- » !
} propeller submergence depth (1.5 diameters to propeller axis). Axial ﬁ
y swirl decay and movement of the center of swirl were also evaluated. e
Both experiments allowed refinements in seeding methods and LDV ‘)

implementation which can be utilized for measurements taken closer 6
to the free surface. LS

)

'.'

- 4
ADMINISTRATIVE INFORMATION i
The work described in this report is part of the Surface Ship Wake 3

Consortium sponsored by the Office of Naval Research (ONR) Applied Research .
\J

Program, under Program Element 61153N, Task Area BT02301N1, and performed p

under the David Taylor Research Center (DTRC) work units 1-1543-128 (FY 87)

and 1-1504-200 (FY 88).

INTRODUCTION
Over the last decade, the use of synthetic aperture radar in
oceanographic satellites has revealed interesting backscatter images of
oceanic flow phenomena and ship wakes. One characteristic feature of these
. images, a narrow dark scar centered in the track behind a moving ship, has

been of particular importance in the field of ship signatures. It has been
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postulated that the dark region is caused by the influence of the turbulent ng
wake of the ship on the Bragg scattering of radar signals at the free surface .}
: .
§
(Lyden et.al, 1985). The physics of this interaction process is not well &ﬁ
- o
W
)
understood due to limited knowledge of the turbulent interaction phenomena for 4&
even very simple wake models. In order to develop an understanding of the wake ia
Yy
interaction with the free surface and to provide guidance for computer N
{]
modelling of wake/free surface simulators, a three phase experimental v’
)
investigation was initiated to characterize the interaction of propeller wake ;v
K]
and turbulence (a major source for the typical ship) with a free surface. An {2
¢
N
additional incentive for this study was the carryover of this understanding to g
designers in pursuit of propellers which could either reduce the "scar" size 'S
(3
. . o
or in some way change its character. ek
I‘g
During the first phase, which is reported herein, feasibility tests were - 'ﬁ
conducted using Laser Doppler Velocimetry (LDV) equipment to measure the i
. )
propeller wake both far downstream and near the free surface. In addition, a :;
)
cursory survey of the far wake of a propeller was conducted to characterize ;:
the flow evolution and highlight any difficulties to be overcome in detailed !
. plog
measurements in subsequent phases of the investigation. Two towing tank \q
4,
¢
\J
experiments using a slender boat and a body of revolution model were k\
®
conducted. The first experiment demonstrated the feasibility of the LDV e
measurement system by utilizing several modes of velocity data collection and f\
A
Y
correlation in the propeller wake. Mean and blade rate periodic turbulent ;b
flow quantities were collected showing good comparison with published data in ET
Ny
the region slightly downstream ( < 1 diameter) of the propeller. 1In the :3'
oG
>N
second experiment, streamwise mean velocity profiles were obtained far }J
»
downstream (up to 18 diameters) of the propeller. Preliminary propeller wake ?Q
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characteristics were measured for the purpose of both gaining an understanding
of the growth rate and nature of the flow and providing coarse empirical data
sets for comparison with numerical simulation results. These characteristics
could be used to plan a more detailed study of the far downstream propeller
wake and its interaction with a free surface. A transverse velocity survey was
obtained at several axial positions for use in propeller wake prediction codes
under development at NRL by Swean (1987). Both experiments led to refinements
in seeding methods and LDV implementation which can be utilized for
measurements taken closer to the free surface.

The later phases of the investigation will be discussed in the

conclusions section of this report.

EXPERIMENTAL FACILITIES

TOW TANK AND CARRIAGE

The DTRC Carriage 1 towing basin was used for the experiments presented
in this report. Carriage velocity was maintained at two knots (1.024 m/s) for
all runs. This constraint to one speed was chosen for the purpose of
obtaining, in the limited time and budget, a more complete data set for

comparison with numerical results.

MODELS AND PROPELLERS

Two models and three propellers were used in these experiments. The first
model, DTRC Propeller Boat (Figure la), was outfitted with a three bladed, 12
inch diameter propeller, After velocity surveys were made at several axial
distances, the Propeller Boat was replaced with a submerged body of revolution

model (DTRC model #4627) supported by two struts (Figure 1b). The length and
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maximum diameter of this model were 15.1 ft. (4.6 m) long and 1.9 ft (0.58 m).
The model change reduced both the circumﬁerential non—uniformity in inflow
velocity to the propeller and the free surface disturbance in the wake region.
These two changes were required for greater similarity with the boundary
conditions used in numerical simulations being conducted by Swean (1987). The
model was attached to the carriage girder. The distance from the propeller to
the measurement position was varied by LDV traverse motion (approximately 1.7
D travel) and by attaching the model at different positions along the girder
(approximately 20 D travel). Two 10.8 inch (27.4 cm) diameter five bladed
propellers were used with this model. Although both propellers were designed
for the same open water performance, one (DTRC #3666) had blades of
approximately 20 percent larger chord than the other (DTRC # 3667). Propeller
#3666 was operated at Cpy approximately 1.2 (Jp = 0.58) and propeller #3667
operated at Cpy approximately 1.4 (Jp = 0.58) (See Appendix B). The design
condition for propeller #3666 was J = 0.6i0 and for propeller #3967 was J =

0.636. The propeller centerline was positioned at 1.65 D below the free—

surface.

LASFR DOPPLER VELOCIMETER SYSTEM

Velocity measurements were taken using a TSI two—component fiber—optic
Laser Duppler Velocimeter (LDV). This system consisted of a 4W argon—ion
laser, frequency shifters, and counter type signal processors. The final
transmitting and receiving lenses were located in a fiber—optic "probe". The
"probe"” was mounted on the end of a strut downstream of the propeller (see
Figure 2). A three—dimensional traversing mechanism allowed travel of 18

inches (45.72 cm) in both x and z, and 26 inches (91.44 cm) in y.
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Data was collected using an IBM compatible micro—computer using data
acquisition equipment and techniques developed by Fry et al. (1987). Data was

then transferred to an Apollo workstation and an IDM compatible micro—

computer for analysis and graphics output.

SEEDING
Several seeding methods were tried in this study with the aim of
maximizing seed detections in the measurement volume and minimizing the flow

disturbance due to the seeding method itself. The flow was seeded using a

slurry of 4-10 micron silver coated glass beads in water. The high cost of
this seed prohibited the use of very large quantities to saturate the basin.
The slurry was therefore introduced into the flow only in the region upstream
of the propeller.

When using the Propeller Boat, seed was injected from 16 tubes mounted
concentrically around the shaft upstream of the propeller (see Figure la).

This method of seeding gave data rates between 100 and 400 counts per second

in the -ropeller wake depending on radial location of the probe.

LAY

g 25 Sl e TN
. W ]

3
-‘
When using the body of revolution model, seed injected from sixteen holes 3
N
circumferentially spaced forward on the hull did not disperse beyond a two o~
Y
inch radius at the propeller plane. This trapping of the seed in the boundary t
"3
layer could not give adequate data rates beyond r/R of 0.5. Little success was ;
J
found in spraying the seed on the free surface prior to a basin run. Seed was :}
~
therefore injected far upstream (approximately 40 propeller diameters forward
‘A
B of the measurement volume} from nozzles on a circular pipe. (Note: The g
b
distance from the seeding strut to the propeller varied with model girder o
i position. See Figure 1l). Vortex shedding from the seeding pipe encouraged }
seed dispersal in the flow but also contributed to unsteady inflow to the
5
.‘
)
)
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propeller. A faired strut was therefore drilled as shown in Figure 1 to
R provide ample seed dispersion with minimal wake effect on the propeller.

Data rates typically varied from 50 to 300 counts per second in the
propeller race. At the edge and outside of the race data rates as low as 5-10
counts per second were encountered. The resulting low rates of seed detection
created difficulties in determining the velocities in the irrotational regions
| of the flow. More detailed study of propeller wakes with the LDV system will

require additions to the current seeding method to increase transverse seed

" dispersal.

§

!

by VELOCITY DATA COLLECTION MODES

&

i SHAFT RATE SYNCHRONIZED MODE

o

4 Velocity measurements synchronized with propeller position were made to

LY

3 demonstrate measirement feasibility using the LDV. A once per revolution

I'. )

& pulse generated by a magnetic pick—up reset a shaft position counter each
revolution. Velocity signals measured by the LDV system were then stored and

‘N

; ensemble averaged according to the counter readout at the time of the

[+

0 measurement .

.

1 The distribution of averaged velocity over all the counter values gave

!
an ensemble averaged picture of the velocity at the point of measurement due

- to flow effects corresponding to propeller position. This technique has been

. previously used to measure blade rate characteristics of propeller wakes (Min
(1978), Kotb and Schetz (1984), Jessup et al. (1985), Nagle and McMahon

f: (1985), Wang (1985), and Blaurock and Lammers (1986)). Bumps and deficits,

t

\

i .

, which correspond to the wake of each propeller blade, can be located in these

L

' velocity distributions.

)
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TIME AVERAGE MODE
Mean velocity measurements were taken at distances from x/D = 0.6 to x/D

= 18.0. Because only two components of velocity were measurable at a time,

- - -

two probe orientations were utilized to obtain three velocity components.

Figure 2 shows the body of the probe mounted in the two orientations used for

o

this experiment. The orientation perpendicular to the axis of the model

PN

measured streamwise (u) and vertical (v) velocities. The orientation parallel

P to the model axis measured vertical (v) and transverse (w) velocities.

COINCIDENT UV MODE

)

Velocity measurements were also taken in the coincident mode. To obtain

a valid velocity data point, two measurements (one from each component) must

P

be obtained within a coincident time window. This measurement can, with high
data rates, allow determination of Reynolds stress. Coincidence mode data
rates during this experiment (for a coincidence window of approximately 1 ms)
, decreased significantly over random mode measurements. The excessive test
time required for these measurements was therefore not pursued beyond a

) feasibility validation.

¥
)

o T T

RESULTS AND DISCUSSION

| LDV TEASIBILITY

i The fiber optic LDV is very well suited for propeller wake velocity

measurement of this type. This LDV requires no calibration and minimizes flow
. disturbances (see Appendix A). 1In addition, the final transmitting and
receiving optics are small and light enough to be easily traversed. For this

experiment, seeding difficulties (see SEEDING section) were resolved to obtain
\]
1
) sufficiently high rates of data collection. The precision uncertainty for the
4
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LDV was determined to be 0.6 percent by repeated measurements. Repeatability

N N

measurements are outlined in Appendix A.
Figures 3a and 3b show typical blade rate velocity plots collected on the

three bladed propeller. The shapes and sizes of the blade wake bumps in these

i~

plots correlate well with similar measurements by Blaurock and Lammer (1986)
demonstrating the feasibility of the LDV system in a synchronized blade rate

i data collection mode.

BLADE RATE ANALYSIS OF FIVE BLADED PROPELLER

Using the body of revolution model and the five bladed propeller (DTRC

. -

#3667) measurements of blade rate velocities were made at several axial and

radial locations. Analysis of these synchronized velocity measurements is

given in this section.

-

Axial Velocit
Figure 4 shows radial variations in the synchronized axial velocity at

different axial locations in the wake. At x/D=0.5 (Figure 4a) five velocity

P By S

deficits can be seen in the angular profile for r/R=0.2. These deficits
corregspond to the wake of each blade. The second deficit from the left,

however, does not have as large a deficit as the others. As r/R is increased

.

to 0.5 in Figure 4a the angular spacing of the deficits is affected near the
anomaly. At r/R=0.8 the characteristic peak in velocity profile caused by the
tip vortex actually reverses and becomes a deficit, indicating a negative
loading on this second blade near the tip. Measurements of the propeller
geometry suggest that this second blade corresponded to blade #4 marked on the

propeller (see Figure 5). It should be noted that the out—of—tolerance of the

~ -
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odd blade was small enough to be visible only after the blade was identified
by these measurements.

Further downstream, Figures 4b and 4c show a loss of blade rate velocity
dependence and a growth of velocity dependence in shaft frequency. Figure 4b
indicates a weak dependence on five wake structures at r/R=0.7. Closer to the
edge of the wake in the tip vortex region, one large characteristic bump has
formed in the velocity profile. The helix asymmetry caused by the oddly
loaded blade apparently accelerates the destruction of blade rate dependence
and gives rise to a growth in dependence on shaft rate. One explanation for
this may be the amalgamation of several tip vortex wake structures into one
spiraling structure. This merging process could occur under the asymmetric
induced velocity field set up by this propeller. Figure 4c shows, at
x/D=5.0, only a small velocity variation inside the wake jet of the same
period as the shaft rotation. Axial velocity dependence on shaft rate has
obviously persisted much farther downstream than the blade rate dependence in

this case of asymmetric propeller loading.

T {al Veloci
Figures 6a and 6b show tangential blade—rate velocity profiles. These

profiles agree with Figures 4a, 4b and 4c in showing asymmetric loading for

one blade. Again, by x/D=2.0 the blade rate dependence has diminished and is

replaced (especially nearer the wake centerline) by a shaft rate oscillation.

Figure 7 shows radial blade-rate velocity profiles. These figures also
agree with the previous figures in showing the shift from blade rate

dependence to shaft rate dependence. Incorrect settings on the LDV system
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prohibited use of data collected at x/D=0.5. Note also that spacial
variations in radial velocity inside theljet wake show a stronger influence on
spacial variations outside the wake when compared to tangential velocity
variations. Comparison of velocity profiles at r/R=0.74 with r/R=1.1 in

Figures 6b and 7b illustrate this difference.

TIME AVERAGED PROPELLER WAKE

The body of revolution model was used for mean velocity measurements.
Propeller #3666 was used for all mean velocity measurements due to the defect
observed in blade rate velocity plots of propeller #3667 (See BLADE RATE
ANALYSIS OF FIVE BLADED PROPELLER section).

M Velocity Profil

Figure 8 shows mean axial velocity profiles for x/D ranging from 0.6 to
18.0. Each profile is taken at z=0.0. The jet decay can easily be seen in this
figure accompanied by the classic jet spreading. Further discussion of the
spreading is covered in the Wake Radjius Evolution section.

One feature observed near the propeller in both vertical and transverse
profiles was a local peak in axial velocity at the hub. This feature could be
caused by secondary flows originating at the hub—blade intersection.
Horseshoe vortices created at this intersection form streamwise vorticity in
the hub region. This streamwise vorticity may transfer high momentum fluid
into the hub—wake region causing a local peak in axial velocity at the hub.
Wake Radi Evoluti

Evolution of the propeller wake radius is shown in Figure 9. For
positions greater than 2 diameters downstream, only measurements in the
negative y direction (y—) corresponding to the starboard side of the model
contained enough information to determine the edge of the propeller wake.
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Measurements for axial positions less than 2 diameters for positive y (y+) and
positive z (z+) show good agreement with'y—. Calculations for positive z (z+)
were not made due to distortion of the propeller wake caused by the support
strut wake. The procedure for determining the wake edge first involved
determining an average value for mean streamwise (U) velocity in the "free—
stream" outside the propeller wake. Determination of which points "belong® to
the freestream averaging group was made by marching inward (toward the
propeller centerline) from the outer velocity measurements and including the
next point if its value was within the 2 standard deviations calculated for
the previous points. Figures 10a and 10b show typical near field wake and
far field wake profiles. The edge axial velocity was defined to be 101
percent of the freestream value. To determine the wake edge position, an
interpolation was performed between the first free—stream point and the first
point inside the wake. Further downstream the velcocity profile exhibits a
shallower slope which increases the uncertainty of determining the 2 standard
deviations cutoff and resulting edge of the wake.

The displacement of the center of swirl from the x axis adds uncertainty
in determining the wake radius because both edges were not measurable farther
aft in the wake (See Figure 8).

v A% i rv

Figures 11-13 show transverse velocity vectors at x/D = 5.0, 7.5, and
10.0. Each radial and tangential point is an average of 1024 individual LDV
data points. FEach complete grid took approximately 15 carriage passes. The
decay of swirl from 5 to 10 diameters downstream can be gualitatively

obgserved. Figure 14 shows the free—surface in relation to transverse velocity
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vectors at x/D = 10. The vertical extent of the propeller wake at x/D = 10 is %
X]
about 0.5 propeller diameters beneath the free—surface. . &
. : »
Swizl Calculation .
- d
Propeller wake calculation codes being developed at NRL characterize the \j
wake by its swirl. Calculations were performed on the data for verification -~
‘f
f
of the swirl decay in the propeller wake. The quantities calculated are given .J
']
below: ‘s
\
@ it
g
swirl rate = 27 | p u(r) Ve,(r) r dr :.:f
o‘."
0 4y
"
swirl rate ’
swirl number = )
- -]
2n p Ug? r dr s'l:
. W
o \
o
\
The local axial and tangential velocities were extracted from data along » A
N\ [4
the y axis (z=0) at various axial distances downstream. Cubic splines were WA
Uy
then fit to the data to obtain smooth profiles in the peaking regions of the :‘::
. | | | . )
velocity before integration was performed. Figure 15 shows the decreasing b
|
. . . . . Wop
trend in the data with increasing axial location. Fluctuations in the swirl ;
quantities in regions where fine axial spacing was measured are indications of ‘3
[ f
the uncertainty band on calculations of this type. The major source of b)‘
l‘-$
uncertainty was the accurate location of the center of rotation; estimated in IS
. L . . . . Q
this case by finding the zero crossing location of the tangential velocity. %
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CONCLUSIONS

The fiber optic two—component LDV sxstem showed promise for non—intrusive
measurements far downstream in the propeller wake. Blade rate velocity
profiles obtained have been compared to data found in the literature. By five
diameters downstream of the propeller, the velocity dependance on blade rate
is no longer visible. Verification of this phenomenon is currently not
possible due to unavailability of other experimental data. The LDV technique
also allowed determination of the asymmetric loading on the propeller blades
caused by a geometric defect at the tip. Careful measurement of propeller
geometry prior to testing is suggested to avoid this type of wake asymmetry.

Mean axial velocity profiles were obtained from x/D = 0.6 to 18 diameters
downstream of the propeller allowing determination of the propeller wake
radius evolution. Transverse mean velocity vector plots were obtained at
three axial locations allowing qualitative determination of swirl decay.

With the model located as close to the free surface as possible while
minimizing the surface deformation, a long wake examination length without
influence of the free surface (with the possibility of a wake intersection
with the free surface near the far edge of the measuring space) was obtained.
Elimination of possible free surface influences near the propeller allowed
swirl properties to be measured for verification of prediction codes being
developed at NRL. Wake evolution properties could also be evaluated for
later comparison with measurements under the influence of the free surface.

In addition, the results of this experiment showed instabilities in the blade
rate wake which could easily have been mistaken for free surface effects had

the model been located closer to the surface.
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%- The illumination of complicated geometrical instability in the propeller
o wake by the velocity measurements indica?es a need for a more visual

i perspective on the wake evolution prior to more detailed velocity

A measurements. Later phases of the investigation should therefore focus on
gaining more characteristic insight into the wake structure using flow

L
5 visualization before returning to the quantitative use of the fiber optic LDV

- Y
T

O

system. Plans are currently being executed for a visualization experiment of

the propeller tip vortex structures using dye injection and a laser light

-~
ey

sheet .

e

.
Pt
e

-
L

14

el
—

« -

A SN .'l‘. D .‘l. y AN LA 44"4‘ OO AN K AKN . 0. 0“‘9 e VD. .'ll ‘.0?..‘.0 y ' f‘ X -‘ ), O‘.O."O» s Wy . .l'u . .o.’q.l'l WUAR W




2O AN AN N AR ANBMEN AN RN N N AN G AN NN AR AR WAV Y VR LN NN LUt A vata aty tatavat, vatoval tat AR dalh Aol B Sal Sal Ml b i D e il KUY S N g

b

4

v

'.

‘

«

"

ACKNOWLEDGEMENTS !

The authors gratefully acknowledge the help of Robert Mellish for his W

' g

A contributions in planning and running the experiment and David Fry for his :

) v

# .

\

‘ tireless assistance in setting up the LDV. The authors also acknowledge the )

D help of John Hamilton and Yong Kim for their support in running the 2

. ~,

t experiment . )

Y

Y

\J

b

4 4
4

]

-

' K

¥ v

Al

“

b g

i

- &

b ‘:

)

il

' .

4

| 3

: e

) )

. e,

i ]

b ‘\

¥ ':I

(]

| W

s

]

;

L (¥

H

v .

A -

4 r

[

e

}

o

15 (

o

™

! -

! A

Y

L}
R T O A A A T O T e T S s R M o B VRV G TR TSI R ROV AT W T S



Mt B a0 0 05°  daYo0a" Py aral

W R WO AR o Vo ka? e et bg¥ gt 8" g’ » Sad at gat

LDV

<
Ojive Section
Seed Emission
Figure 15. DTRC Propeller Boat
Seed Strut LDV\\
/ \
e |l

Figure 1b.
Figure 1.

. » o g R v P
MO l.d,.". l‘-‘l‘ .n',.l‘. o0 l'-‘t'- AACAS A AL o‘l.-‘l’a a0y 0 SN A l‘n ) ..“ 0’.."0. ml.:, l...l‘. % .. - ' .._ 3

Body of Revolution Model

Experimental Models

16

L e e
aiahet Bt Wkl

W™

-

v,

A ™

-t W

2%

S

;";:LYZ(.

St el

4
a

- = e R

3wy



At

RIS €3 a2 nt 9%, F 2%, 8 Kb vl Fa%y s A& QALK Fa o g G val v "1’vv‘ R RN "at B 0a® 00 g 40 G ia v ¥C S0 N N0 A 070 7R 2'¢ 200" & 8.0 Tol) Cud Vol ToR

<

- -,

- s

-y

3—Dimensional LDV
Strut Traverse

Surface Piercing
«—— LDV Strut

P R R

Coordinate System

XA A

4 Ve

Figure 2. LDV fiber optic probe and support strut

PR N e

O

17

v “d

¥ rd
N ‘* A Y ‘ \ o Y \\. ' ANy \.’ 'f AN " 'f 'Jf L™ .f "nf\rNr\"‘ .f.."‘- - AT AT A .\

» T X KA R
MO O A AN R X X X ) 3 - v *



PN

T

-

PPN O

(3

RS T PO R T WOr e

CWTS L L 9 1 AT o Ne M Mg RLT R

1.5
1.25
1
U/Ueo
B.75
8.5
* r/R = 0.34
8.25|. + r/R = 0.66
— r/R = 1.0
6.66000 1 i | I 1 1 1
8.66868 45 ] 135 180 225 278 315 368
Angular Position from Triggering Point (deg)
Figure 3a. Axial velocity, x/D = 0.5
8.5
8.333333
8.166667 .
ViU #“
1)
6.08660 | J W )
‘% i > A Y :

aur' W 1ot

* r/R = 0.34

-8.333333|
+ £/R = 0.66
— /R = 1.0
-8.5 1 I | I 1 1 L
8 89066 a5 30 135 180 225 270 315 360
Angular Position from Triggering Point (deg)
Figure 3b. Radial velocity, x/D = 0.5
Figure 3. Typical blade—rate velocity plots: Three bladed

(W N ™S A

N T T A T A S e O T U S Y S s T A A A ety

propeller

18

OISR, SN

A A !

™ -~ - Y

»

SaIE

LRIRY
»

e

A

-

58

BTy



RITX

< hae puv o ggs

g

AT

W5 NA At Q'\ Y v 2 2l en" _\A T . . - 0 '.. .‘. . YRy V™3
2.2%
" *x/R=0.2 -
2 .. + /R =0.5 <
o . /R = 0.8 >~ .
- x/R = 0.98 Fr -

8.5 1 | 1 1 | 1
0.60008 45 98 135 188 225 278 315 360
Angular position from triggering point (deg)
Figure 4a. x/D = 0.5
2-

8.5}

000000 _ _ ... -
f.a00n0 45

Figure 4.

oA L ) 1 | L

* r/R = 0.7
+ r/R = 0.95
x r/R=1.0
~r/R=1.1

an 136 [C NPT 270 s 360
Angular position from triggering point (deg)
Figure 4b. x/D = 1.25
Axial blade-rate velocity: Five bladed propeller

19

O R

RIS

N

Rl TR R ot A i

oA o A D

M, T
L)

il

by

5 B_Lg T S8V s AN

.

- e -
- n o)

o
o P T T FOT P A P I:- S S ,\__-’. P J. _,. _,, P AS ‘,. K



Ay it atata atat ot b W g W ey PN iTRN

n/u P

Lad N0t I, 6% TN P NN

a'9.a"

WY XK R

1.75

« y/R = 0.37
4+ x/R=1.11

"‘P“MAW“M’«W’“WVW”

4 4 +
+ +
DR
+ + + 0+ ) + t ' 5 4y +
lr‘: ....\‘{’ ”g‘ q Q} ’0"“ H o ‘6‘.0H
g4, O“( '.;,u ‘ ’ ,‘J ’ 90 ratd
Wy wm w’ ' ‘k!. R TY w“”““ '-“ &;j ”w
o Fra rees "“‘ LR R o H o, .\'}\,\‘r s*u
6.75
9.5 1 | l | 1 L 1
0.00060 45 98 135 188 225 270 315
Angular position from triggering point (deg)
Figure 4c. x/D = 4.8
Figure 4. (Continued)
20
R':f. - qu.k":j -\l..-l‘u PRy ‘-‘L‘AAL.A A(.l;t".’..-il :

360

[y
>

, ‘~

oPad

5‘.‘)‘?"

&

AR AR




N T R N R N T L L L TN W N NN o W S N O o R R T U R o . " e 4% o

0,4
30 ¥ Y Y T — v v N M 2

N
w

N
o

— Blade #1 ~

— - Blade #2 )

- - Blade #3 |
—-Blade #4

——Blade #5

15 s [ A L " 1

Pitch angle (deq)
/

cac,

0.5 0.6 0.7 0.8 0.9 1.0

O et am 5t

," ‘.-l) '.'-

Figure 5. Dimensional measurements on propeller #3667 v

21

-
[T B T T LT A R T R e L] L. T - . (PR T AN LT AR P T e Y oW W N R A T % B a5 t
TR, OV ARGl 2 NG ‘('Q-.‘ AR _.,.,._,. ALY " MRS AR RN *"‘v' ,'- .' O lat-aghy \ AT



R S R S e S R T R R Ry e T O Ry D e IR DR IR T U P T U U LV VLV L

OO A

-8.25

Voo
-
Tangential velocity / U fo

-8.75

0.2
N + t/R = 0.5
K) . x/R = 0.8

-r/R=0

Yy -1 ] ] i | | 1 I
- 8.30868 s 39 % 160 225 778 315 68

Angular position from triggering point (deq)

Figure 6a. x/D = 0.5

2 X,

s )& » : “:. X

U!-

Tangential v«

o * r/R = 0,37 'ﬁ.ﬁ . ..*.‘
a

. 0.5k 4+ /R = 0.74 .

) x r/R = 0.93 'Qw o A

M ~ /R = 1.11 " »

) : "Q .

.

a -1 I ] ] 1 L | 1

| 0.8€009 45 30 135 168 225 279 318 360
Y Angular position from triggering point (deg)

Figure 6b. x/D = 2.0

“ Figure 6. Tangential blade—rate velocity: Five bladed propeller )
DR/

!

L)

)

)

N 22

?

."

R

o

T e T Wt e et AT Y At AT A" s AT AT AT T AL AL A R AL 8 A A A -
! "- * o ‘) s "- - nt ._ e 'l- ". '\. \‘\.‘ v .\\..'.__ v > e K NN

b TS W % T

T A L
L L, pla X MY

- R T L )
<y NN AP LA



R WY NN

v oy wm v & 8

Radial velocity / U o

Ko gy
H

\
L NN W Tt

MW PN AT USCW L IG A S W aealy

Y R LG L e I P
K 3"y 0 X 9

RS

-6.4 ! | L | 1
9.80800 45 98 135 168 225 279

Angular position from triggering point (deq)

315

368

o Figure 7a. =x/D = 1.25
) % XX, K
g
+H g ‘%
8.3 . .‘:;x‘)&,*w"{?}\« *
X o IR A T 0
x* ¥ 0
0.2l

X X
bl W)
; )
8

] ' s

d ol RN £ A
b R et TN, o R

I kB TR T

3 9-00000 JFL Yostht %‘ % J "

o L * b4

¢

-

-0.4 | | 1

L —L 1
0.000800 45 ) 135 188 225 278

Angular position from triggering point (deg)
Figure 7b. x/D = 2.0
Radial blade—rate velocity:

N T ARG S AR T -y
PALICNI RIS

1
315

S a0 4 \ o
LA SO o NS e o o

Five bladed propeller

IR0 Ay o T



FyRURY g w avh mte 4% 08 < g N R L L M L 30, WL VR FUR UL RN WU W WO WSO S S T A PO AR N AN R P N Ak N P L PR WY ¥ WUWOVOR W

) 8.3

8.2

9.1

9.00960

Radial velooity / U o

* r/R = 0.37

+ /R =0.93
) a3l x r/R=1.11

Ly -9.4 | 1 1 | | 1 I
ay 0.66008 45 96 135 168 225 270 s 380

Angular position from triggering point (deg)

Figure 7c¢. x/D = 4.8

Figure 7. (Continued)

B 24

Wit o LALHGLREN, ‘o ‘ 'n . A% '. ' . Ax ‘»\- R WM




*—x X/D = 10.01

% X/D = 18.07
&~ X/D =

6.5 4

ga X/0= 22|
—e X/D = 0.6

Mean axial velocity, x/D = 0.6 to 18.0

Figure 8.



Wake radius / R

3.0

0 v-
05} A Z2- )
0.0 I} A i A XL " —l e Il A L A b 4 A 1 A i A
0.0 2.0 4.0 60 80 100 120 140 160 18.0 20.0
X/D
Figure 9. Propeller wake radius evolution

L

G AR5 St N

LLA L

PP Y

-

Ay

PN,

" »_x
-

P IRE




RTINS

UM IR

»ys

Uu/uUufs

U/Uuts

R B U b Bt B Y ) B e R R AR A A R A R A A WMH N I,
1
¢ a

Oon oP

O

1.8 - o |lo a

o]

= (s]

1.4 \u% o
1.3 1

o
1.2 ﬁ
1.1 o o o]
o
1 ooooa o
0.9 T T
-3 -1 1
Y/R
Figure 10a. Near field wake, x/D = 2.2
1.8
1.8
1.4 4
13 4
o
A o
1.2 a 0o
. o o
o
o
1.1 °
. a
| a
o
' ﬁ: oopoab
09 — T T
-3 -1 1
Y/R
Figure 10b. Far field wake, x/D = 11.5

Figure 10. Typical propeller wake profiles
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APPENDIX A
VELOCITY MEASUREMEN? CONSIDERATIONS
VELOCITY REPEATABILITY MEASUREMENTS

Repeatability measurements in the free stream determined the uncertainty
for LDV velocity measurements. A standard error of the mean analysis on 6
points in the free stream resulted in an uncertainty of 0.6 percent.

Measurements were made of the repeatability of various velocity profiles.
Figure Al shows the repeatability of measuring the body of revolution wake
deficit with the dummy hub installed. These profiles were taken on subsequent
passes down the basin. A slight run to run bias error is observed due to
carriage speed and/or prop rpm variations. The average difference in magnitude
between the two profiles is approximately 3 percent.

Figures AZa and A2b show repeatability of measuring the tangential and
radial velocity at a downstream position of x/D=10. These profiles were taken
sequentially; however, each profile is the result of two passes down the
basin. Therefore bias.error is not limited to different runs. Good
repeatability is seen for the tangential velocity. The radial velocity
appears to be more sensitive to bias error.

Figures A3a and A3b show repeatability measurement of streamwise and
radial velocity at x/D=16.5. These profiles were taken on subsequent passes.
The streamwise velocity repeatability is good with an average difference in
magnitude of 1.4 percent. However, the radial velocity again appears to be

sengitive to bias error.

PROBE FLOW DISTURBANCE
The flow disturbance due to the probe may be estimated by calculating the

potential flow disturbance at the measurement volume location for each of two
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conditions corresponding to the two orientations of the probe used in this
experiment (see Figure 2). Results of potential flow computation for both the
probe and support strut indicated velocity bias errors of less than 0.2

percent for either probe orientation.

FLOW UNIFORMITY

A uniform inflow into the body of revolution is necessary to insure as
uniform a velocity as possible into the propeller. In order to introduce
enough LDV seed particles into flow to obtain a high data rate (approximately
200 points/sec), a seeding strut was necessary. This strut was positioned
upstream of the model at the front of the carriage. Initially, the strut was
a cylindrical tube with holes positioned along the vertical. An airfoil
section with holes positioned vertically was implemented on the second test
(see Figure 1b). This strut section had a maximum thickness of 1.125 inches
(2.9 cm) and a chord of 2.75 inches (7.0 cm). This strut extended from the
free surface to approximately 20 inches (50.8 cm) below the free surface. To
vary the distance of the propeller from the measurement volume, the model was
moved along the carriage girder.

Figure A4 shows transverse uniformity profiles approximately 18 feet (5.5
m) downstream of the seeding strut without a model installed. Measurements
were taken at propeller center—line depth (17.8 inches (45.2 cm) below the
free—surface) and 4 inches (10.2 cm) above and be:-w the propeller center-—
line. A velocity defect of approximately 2 percent due to the seeding strut

was measured.
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BODY OF REVOLUTION WAKE MEASUREMENT

RN
.

. A dummy hub without blades was mounted in place of the propeller. Figure

A5 shows profiles of the hull wake deficit at x/D = 0.6 with the dummy hub

spinning. The influence of the strut wakes are clearly distinguishable in the

5 A xS N OX Wy

z+ direction. Also shown is unpublished other DTRC wake survey bare hull data

at the propeller plane, Figure A6 show profiles of the hull wake deficit at

x/D = 0.6 with and without the dummy hub spinning. |
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Mean axial velocity with spinning dummy hub, x/D = 0.6
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APPENDIX B
PROPELLER CHARACTERISTICS

Characteristic open water curves for propellers #3666 and #3667 are shown
in Figures Bl and B2. Propeller geometry is shown in Figures B3 and B4.

Thrust and torque measurements were performed for the operating condition
of this experiment. Upon analysis, however, it was determined that these data
were in error. In order to estimate the operating point, a wake fraction was
estimated by integrating the velocity profiles near the propeller plane with
the dummy hub installed (see Figure AS5). Jr was determined using the wake
fraction. Cq was then determined using Jp and the characteristic open water

curves., Table Bl list these values.

Table Bl. Propeller operating characteristics

- -

FrESEL

b o S,

L SN B

Propeller #3666 Propeller #3667
Wake fraction 0.9 0.9
Jp 0.58 0.58
Cop 1.2 1.4
39
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